SOLUTIONS FOR MIDTERM 1

1. The probability that a red ball is drawn is $\frac{2}{7}$ while the probability that a blue ball is drawn is $\frac{5}{7}$. There are $\binom{4}{1}=4$ ways to draw three red balls and one blue ball in four trials; the probability of each of these is $\left(\frac{2}{5}\right)^{3}\left(\frac{5}{7}\right)$; hence

Answer: The probability that three red balls and one blue ball are drawn in four trials is $\binom{4}{1}\left(\frac{2}{5}\right)^{3}\left(\frac{5}{7}\right)=\frac{160}{7^{4}}$.
2. The probability space for this problem is the infinite set $\Omega=\{H, T H, T T H, T T T H, \ldots\}$. The probability of $T T \ldots T H$ with $n T \mathrm{~s}$ is $\frac{1}{2^{n+1}}$. Let X be the random variable that counts the number of flips before H appears; the value of X on $T T \ldots T H$ with $n T \mathrm{~s}$ is $n+1$. The expected value of X is

$$
E(X)=1 \cdot P(H)+2 \cdot P(T H)+\cdots=\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{n}{2^{n}} .
$$

There are several ways to compute this infinite sum. For example, multiplying by 2 one gets
$2 E(X)=1+\sum_{n=1}^{\infty} \frac{n+1}{2^{n}}=1+\sum_{n=1}^{\infty}\left(\frac{n}{2^{n}}+\frac{1}{2^{n}}\right)=1+\sum_{n=1}^{\infty} \frac{n}{2^{n}}+\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1+E(X)+1$,
i.e. $2 E(X)=1+E(X)+1$. Hence,

Answer: $\mathrm{E}(\mathrm{X})=2$.
3. (a) Answer: $-\frac{1}{3} \log _{2} \frac{1}{3}-\frac{1}{4} \log _{2} \frac{1}{4}-\frac{1}{5} \log _{2} \frac{1}{5}-\frac{1}{6} \log _{2} \frac{1}{6}-\frac{1}{20} \log _{2} \frac{1}{20}$.
(b) Step 1: $\frac{1}{6}+\frac{1}{20}=\frac{13}{60}$. New set of probabilities in descending order: $\frac{1}{3}, \frac{1}{4}, \frac{13}{60}, \frac{1}{5}$.

Step 2: $\frac{13}{60}+\frac{1}{5}=\frac{5}{12}$. New set of probabilities in descending order: $\frac{5}{12}, \frac{1}{3}, \frac{1}{4}$.
Step 3: $\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$. New set of probabilities in descending order: $\frac{7}{12}, \frac{5}{12}$.
Encoding: $f\left(\frac{5}{12}\right)=0, f\left(\frac{1}{5}\right)=00, f\left(\frac{13}{60}\right)=01, f\left(\frac{1}{20}\right)=010, f\left(\frac{1}{6}\right)=011$,
$f\left(\frac{7}{12}\right)=1, f\left(\frac{1}{4}\right)=10, f\left(\frac{1}{3}\right)=11$.
Answer: $f\left(\frac{1}{3}\right)=11, f\left(\frac{1}{4}\right)=10, f\left(\frac{1}{5}\right)=00, f\left(\frac{1}{6}\right)=011, f\left(\frac{1}{20}\right)=010$.
4. An error will be undetected if it is an error in an even number of bits, i.e. either two or four bits. The probability of a two-bit error is $\binom{4}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}$ while the probability of a four-bit error is $\left(\frac{1}{6}\right)^{4}$.

Answer: $\binom{4}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}+\left(\frac{1}{6}\right)^{4}=\frac{151}{6^{4}}$.
5. The polynomial $x^{4}+1$ is not divisible by the polynomial $g(x)=x^{2}+x+1$; the remainder is $x+1 \neq 0$. Therefore the CRC with generating polynomial $g(x)$ DOES detect two bit errors that are four bits apart.
6. (a) Answer: $r=-26, s=45$, i.e. $154 \cdot(-26)+89 \cdot 45=1$.
(b) Answer: $\overline{89}^{-1}=45$.

